
Integrations basics

Export API

Trigger API

External API recommendations

API - English version

Integration is anything which enables chatbot to connect with outside world. It could be initiated by the
chatbot using step on certain point in the chatbot tree or in the opposite by some external system by
triggering some of bot APIs.

Integration step could be added to any place of chatbot tree and is triggered in the moment when any
user is passing given point in the conversation. It can call any of supported APIs, pass parameters inside
(static or dynamic based on data we already know about the user using variables) and store results for
further usage.

Fetching some data from system to show (in mesage, carousel, ...) or use for further decisions in
the bot flow (for example show available job positions) - examples of use:

Show carousel of available job positions in ATS system
Show carousel of recommended products in eshop
Get maximum loan value based on values entered by the user

Storing some data from bot to external system (add new candidate to selected position using data
user entered)

Store candidate application to ATS system with all gathered information (name, email,
phone, position ID)
Order some selected product in e-commerce platform
Create support ticked based on gathered clues in servicedesk systems like Jira

Triggering some action in external system (trigger remote modem restart in internet connection
helpdesk bot)

Every integration step type consists of two parts. First of them is JSON schema which describes what
input parameters of which types are expected, which of them are required and what output structure
should be expected. Second part is the code itself which implements:

How is bot authenticated (in the most cases using some predefined token stored in the bot settings)
How are parameters transformed and attached to the call

Integrations basics

Integration step

Use-cases

Architecture

How are output data transformed before saved into output variable
Error handling

show fatal bot error to the user and stop conversation
trigger some predefined dialog
just log error and save some flag to user data variable so some decision could be made in
the tree based on it

In ideal case, integration step performs just a single API call but in some advanced scenarios it is often
needed to perform multiple calls and combine input/output data to fulfill desired goal.

Integration step could behave in three different ways from the point of view of timing and performance.

Synchronous call
User needs to wait for completion of API call during conversation
All data returned from API could be saved and used further
Data are not stored in bot database so filtering/searching should be performed on target
system and just required subset of data should be returned
System should be stable and response should be fast (max. few seconds) to not let user wait
too long

Asynchronous call
Fire the request but do not wait for the result and continue immediatelly
Can be used to trigger some not-critical action where we do not need to know the result
For example track event into some analytics system

Call on background
Data could be downloaded on background and stored into bot's database
They are later accessed locally by integration step during conversation quickly without need
of any other system
Bot needs to filter/search data by itself which has limited performance (max. thousands of
rows) and features (only filter by by tags or by locality radius)
Works also fine for slow and unstable data sources
There could be several ways how to trigger background data update

Periodical pull (reliable but consumes an unnecessarily large amount of resources)
Push (external server pushes data to the bot when some change occurs - always all of
them or incrementally)
Pull on change (external server just signals bot that there is some change and bot do
the same as during periodical pull)

Advanced topics

Timing

Level of abstraction

It is very important to consider which level of abstraction use during the process of integration step
design. For example imagine that we have some system called "MyCRM" with a lot of modules with REST
API which can perform insert/update/delete operations on any of them when every module has different
set of fields. Goal of prepared integration is just to add customer with given name and email. Now we
have at least three levels of abstraction to choose from:

Action level
The most specific, single purpose, very easy usage, need to change the code during every
change of logic
Integraton called mycrm-add-contract
Parameters name=... and email=...
Returns id=... which could be used directly

Protocol level
The most generic, versatile, difficult usage, do not need to change the code when logic
changes, API needs to support such generic format
Integration called rest
Parameters endpoint=mycrm.com/api/v1/customers , method=post ,
body={"name":"...","email":"..."}

Returns {"response": {"body": {"id":"...", ...}, ...}, ...} which needs to be parsed
Service level

Balance between two levels above
Integraton called mycrm
Parameters module=customers , action=add , body={"name":"...","email":"..."}
Returns {"id":"...", ...} which needs some simple parsing

It could not be said in a generic way which of these levels is correct. It always depends on given use-
case, specs of used API and plans for future modifications of logic by non-programmers.

Channel is used to transfer messages from bot the user and back. We have some channel integrations
built in the product itself, but it is possible to integrate any custom chat channel with proper API. There
are three ways how to do it:

Feedyou will implement connector to present API of the new channel
Channel will implement connection to generic Microsoft Bot REST API which is already supported

(more info here)
Channel will be part of some channel-aggregation platform which is already supported by Feedyou
such as MS Bot Service or Mluvii

Channels

https://docs.google.com/document/d/1J7WpmoQK1SJ2N8PkFHedGalBsNgR5JJEmhN8bAfsBnQ/edit#heading=h.3qp6jtpays5d

Some chat channels also support transferring events during the same "pipe" which is used for messages.
Example could be WebChat component which allows:

during initialization of chat component on the web page, any data we know about the user (such as
email, selected page, auth token, ...) could be passed in and then can be further used in the
chatbot tree for decision or passed into other integrations (for example auth token passed from the
web page could be used for API authentication with user-scoped access permissions)
when any event happens for page (for example user clicks some element, fill form field, etc.),
webchat can send event to the bot to save some user data, start selected dialog and so on
in the opposite when user reaches some point in the tree, it is possible to send event from bot to
the webchat component and trigger predefined listener to perform any code in the page (for
example close chat, reload page, ...)

External system can trigger selected dialog for given user by calling Trigger API which has following
parameters:

Selected user address (probably previously stored in some output integration, some segmentation
filter could be also available in the future instead of single ID)
Dialog ID to trigger
Optionally list of user data to preset before triggering dialog

You can read more in Trigger API documentation.

There is an API exposed by every running chatbot which could be used to retrieve all stored data for
every user. This API is mainly used for analytic purposes (such as how many users have passed certain
point in the tree - and thus have given storage filled) but also could be used for anything else. There are
available basic parameters that could be used to filter out only given subset of users.

You can read more in Export API documentation.

Dialog trigger

User data export

Preset integrations

http://docs.feedyou.ai/books/api/page/trigger-api
http://docs.feedyou.ai/books/api/page/export-api

There is already a lot of integrations already implemented in Feedbot Designer. You can check

this spreadsheet to find out more. It is important that every system could be integrated in large number of
different ways with different options so it is needed to consider given use-case carefully.

Not all integrations needs to be programmed directly in the bot's code. Different kinds of
automation/integration platforms or tools could be used to connect different services including bot to
implement needed logic. Good examples of these platforms could be:

Integromat

Zapier

Microsoft Azure Logic App
... and many others

Following list tells what is often needed to have to allow new integration to be implemented:

Well described use-case incl. the way how integration should be used in the chatbot tree such as
input/output variables and how they will be used on other parts of the tree
API specification incl. authentication (if target system currently do not have any and is going to

prepare some just for the chatbot, take a look at the example how we think this API should look like)
Example credentials to be able to test integration during implementation against real system

API automation platforms

Adding new integrations

https://docs.google.com/spreadsheets/d/1kwOMxG-WSvuExrZpPdrZwmK4Oc3md2eUW-UT5F6Zz74/edit#gid=0
http://integromat.com
https://zapier.com
https://azure.microsoft.com/cs-cz/services/logic-apps/
http://docs.feedyou.ai/books/api/page/external-api-recommendations

Base URL for export API is bot-specific https://feedbot-${BotId}.azurewebsites.net . Please use the
?code=... query param or x-functions-key: ... HTTP header to perform token based authentication.

GET /api/management/export/userData

Returns list of objects containing all user-scoped data which bot persists. Optional filters parameters:

notEmpty use comma separated list of fields (in camelCase format) which should not be empty to
include given user in the output list
fromTimestamp and toTimestamp second-based UNIX timestamp to limit users in the output based

on the date of last message
where... where ... is name of field which should be equal to the parameter value

GET https://feedbot-
${BotId}.azurewebsites.net/api/management/export/userData?notEmpty=phone&fromTimestamp=1559901734&code=${FunctionKey}

to get data of all users who have interacted with the bot after 06/07/2019 10:02:14 and have
passed through question with phone storage
GET https://feedbot-
${BotId}.azurewebsites.net/api/management/export/userData?whereGender=male&&code=${FunctionKey}

to get data of all male users

Export API

Get users data

Calling this endpoint without timestamp filters can return very large amount of data and affect bot
performance. Regular daily fetching of data from the past day is recommended approach.

userId

timestamp

... all storages in camelCase ...

Examples

Get users data snapshot

GET /api/management/export/userDataSnapshot

Returns list of objects containing all user-scoped data snapshots (generated by the "clear user data"
action) which bot persists. Usage and all params are the same as in "Get users data" API.

GET /api/management/export/nlpLog

Returns list of objects containing all inputs entered by the user which was not possible to process using
conversation tree. Desired time range could be specified using fromTimestamp and toTimestamp second-
based UNIX timestamp.

This API method is available since bot hosting version v1.7.474

userId

timestamp

... all storages in camelCase ...

Get NLP logs

This API method is available since bot hosting version v1.7.474

userId

timestamp

dialogId

stepId

stepType

query

modelId

intent

result

processed

GET /api/management/export/outgoingEmail

Returns list of objects containing all emails sent by the chatbot incl. recipient, subject, body. Desired time
range could be specified using fromTimestamp and toTimestamp second-based UNIX timestamp.

GET /api/management/export/outgoingSms

Returns list of objects containing all SMS messages sent by the chatbot. Desired time range could be
specified using fromTimestamp and toTimestamp second-based UNIX timestamp.

Get outgoing emails

This API method is available since bot hosting version v1.7.474

userId

timestamp

body

from

recipients

replyTo

stepId

subject

Get outgoing SMS

This API method is available since bot hosting version v1.7.474

userId

timestamp

channel

link

GET /api/management/export/fuzzyQuestionAnswerLog

Returns list of objects containing all utterances processed by the fuzzy question answer plugin. Desired
time range could be specified using fromTimestamp and toTimestamp second-based UNIX timestamp.

GET /api/management/export/integrationLog

message

provider

recipients

Get fuzzy question answers log

This API method is available since bot hosting version v1.7.474

userId

timestamp

intent

score

text

stepId

dialogId

matched

otherClassifications

Get integration log

This API method is available since bot hosting version v1.7.474

Returns list of objects containing all integration invocations. Desired time range could be specified using
fromTimestamp and toTimestamp second-based UNIX timestamp.

GET /api/management/export/urlTracker

Returns list of objects containing row for every click on URL button in bot by every user including target
URL and domain. Desired time range could be specified using fromTimestamp and toTimestamp second-
based UNIX timestamp.

userId

timestamp

url

method

requestBody

requestHeaders

responseStatus

responseBody

duration

Get URL tracker

This API method is available since bot hosting version v1.7.474

userId

timestamp

domain

url

The Trigger API can be used to invoke a specific dialog for a selected user in a virtual assistant initiated
by an external system.

Each bot runs on its own domain (usually in the format https://feedbot-${BOT_ID}.azurewebsites.net)
and is protected by a key in either ?code=... URL query parameter or x-functions-key: ... HTTP
header.

POST /api/management/trigger/${ADDRESS_JSON_AS_BASE64}/${DIALOG_ID}/${MODE?}

call parameters are:
user address (object with properties bot , user , channelId a conversation?) in JSON
string format encoded with BASE64
ID of the dialog to be run
optional start mode, currently supported only by "clear", which first deletes the user's
position in the tree and then starts the dialog

the request body can contain a JSON object with additional information that is stored in the user's
data
the response to it needs to be defined in the Designer in advance, where additional information can
be used using variables

the user requests a transfer of the credits on their loyalty card to their account, which may take
several minutes
the virtual assistant uses an integration step to call the customer's system, including passing the
user ID to initiate the transfer
informs the user that the transfer has started + triggers a timeout for 10 min, which would inform
the user that the transfer has failed to complete if no response is received from the system by that
time
if the transfer was successful, the system calls the Trigger API POST
POST /api/trigger/5ca39df/transfer-complete?code=... on the bot with the transaction details as

JSON body of the request, which triggers a dialog that confirms to the user that everything was
successful and displays the transaction details
if the transfer has failed, the system calls the Trigger API POST POST
/api/trigger/5ca39df/transfer-error?code=... on the bot. and the virtual assistant responds with
an error message with instructions on how to proceed

Trigger API

Example of use

It is possible to prepare any number of "integration steps" in the virtual assistant, which are points in the
conversation tree where the virtual assistant uses the API to integrate with another system in order to
obtain some data necessary for its function or, conversely, to send some data that it has detected from
the user to the system.

The virtual assistant can adapt quite a bit to the format and structure of the API, but if the API is created
for the sake of the virtual assistant, the following recommendations can be followed to make the
implementation as smooth as possible.

Authentication is ideal in one of the following ways
username+password as a BASE64 string in the header Authorization: Basic ...
token in the header Authorization: Bearer ...

can be predefined for the entire virtual assistant
or if the bot e.g. runs inside the system where the user logs in, this token can always
be passed to the bot with the scop of the user, so that the bot will have at most his
permissions and not more

standard OAuth2 client_credentials grant (i.e. a separate request to obtain and extend the
access token), which is then used in Authorization: Bearer ... with each request

Ideally follow the REST rules for the HTTP methods used
GET for data collection
POST to create a new record or start an action (not idempotent)
PUT to update an existing record (its identifier ideally as a URL parameter)
PATCH to partially update an existing record (its identifier ideally as a URL parameter)
DELETE to delete an existing record (its identifier ideally as a URL parameter)

Request and response body as JSON
If the method requires it, implement filtering and sorting as URL parameters or as custom X-...
HTTP headers
It would be a good idea to keep the maximum response time under 3 seconds, because in some
use-cases the API may be called synchronously in real time and the user will wait for the result

External API recommendations

Recommended API properties

Sample

The virtual assistant can use the API to retrieve a list of scheduled events from the dependent system.
The user IDs are passed, for example, to a WebChat component inside an internal system where the user
is already authenticated. The data is used by the bot to display a "carousel" of scheduled events, where
the user can select one of them and continue with some other action.

At the end of the communication, the virtual assistant can send information about the newly acquired
user to the CRM. The request can include all the data that the virtual assistant has collected about the
user.

GET https://somedomain.cz/api/v1/user/33/events

Authorization: Bearer ...

Content-type: application/json

→ 200 [{"id":"1", "name":"Onboarding meeting", "date":"2020-05-07T08:22:30.871Z"}]

POST https://somedomain.cz/api/v1/user

Authorization: Bearer ...

Content-type: application/json

{"email": "user@example.com", "name":"Jack", "surname":"User", "interestedInProductIds":

[244, 234]}

→ 200 {"id":"433"}

