
How to deploy WebChat on the web

Problems with WebChat deployment

Operating a microsite on your own subdomain

WebChat - English

There are several options for deploying WebChat to a site, which vary depending on how much
customization of its appearance or behavior is needed.

The quickest way is to just insert the simple code you get from the virtual assistant (VA) creator

before the </body> end tag. It will look similar to the no-config.html sample, but with the bot ID filled
in. Of course, you can also use services such as Google Tag Manager to deploy it without having to
manually intervene in the code.

The design and behavior of the webchat can then be set from Feedyou (or in Designer if you have
access). All domains where VA will run must be manually enabled from Feedyou. If VA is in test mode, it
will not be displayed on the site unless #feedbot-test-mode is added to the end of the URL.

If it is desired to modify the appearance or behavior of the chat, it is possible to insert it into a custom
HTML element that can be styled in your own way. Insert the DOM element as the second parameter of
the BotChat.App function. The chat will then be rendered into it. The element doesn't have to be a
popup, it can be a part of the page.

Examples of possible uses are available on GitHub, e.g.:

samples/feedyou/expandable.html - popup window in custom element

samples/feedyou/embed.html - bot placed in a specific page element

samples/feedyou/persistent.html - a special variant that saves the user ID and conversation in the
browser so that it can refer to it the next time it visits the site

How to deploy WebChat on
the web
Deployment options

a) Unpacking chat

b) Chat to custom element

If the chat is hidden when the page is loaded and is only displayed based on user action, it is
important to call BotChat.App only after it has been displayed to avoid unnecessary VA calls.

https://github.com/wearefeedyou/feedbot-webchat/blob/master/samples/feedyou/no-config.html
https://github.com/wearefeedyou/feedbot-webchat/blob/master/samples/feedyou/expandable.html
https://github.com/wearefeedyou/feedbot-webchat/blob/master/samples/feedyou/embed.html
https://github.com/wearefeedyou/feedbot-webchat/blob/master/samples/feedyou/persistent.html

WebChat is an open library built on top of React, so it can be easily plugged into an existing React

application or modified in any way. For more information, please contact Feedyou.

If you just want to test how the VA will look on any page, you can set the appropriate data in the following
code and paste it all into the console in the web inspector (usually just right click anywhere on the page
and then Inspect or Explore). DO NOT use this code in a production environment, that is what options a) -
c) are for. If the bot is still in test mode, you must first add #feedbot-test-mode to the end of the page
URL

Regardless of which insertion method you choose, there are a few basic settings that need to be set to
connect to the correct bot. These are indicated in the examples by ... and you get them from Feedyou
- specifically directLine.secret and bot.id . During testing, you can use the values listed in the
comments in that demo.

There are other settings that can be used to modify the behavior of WebChat:

locale - allows to change the language of texts in the WebChat component from the default

c) Advanced deployment methods

d) Testing on any page

(function (f,y,b,o,t,s){(t = y.createElement(b)), (s = y.getElementsByTagName(b)[0]);t.async

= 1;t.src = o;t.onload=function(){

BotChat.App({

 bot: { id: 'feedbot-...' }, // can be found at the end of the "Code" link in the "Channels

settings" section of the Designer

 channel: { id: '...' }, // is a 6-letter code that can be found at the end of the "Preview"

link for a given WebChat in the "Channels settings" section of the Designer

})

};s.parentNode.insertBefore(t, s);

})(window,document,"script","https://feedyou.azureedge.net/webchat/latest/botchat-es5.js");

(function (f,y,b,o,t,s){(t = y.createElement(b)), (s = y.getElementsByTagName(b)[0]);t.rel =

'stylesheet';t.type = 'text/css';t.href = o;s.parentNode.insertBefore(t, s);

})(window,document,"link","https://feedyou.azureedge.net/webchat/latest/botchat.css");

Linking to the bot

Other settings

mailto:hello@feedyou.ai

Czech (e.g. en, sk , sr, hu ...)
disableInputWhenNotNeeded - if set to true , hides the text input if the bot does not ask the user

anything (suitable for virtual assistants without NLP model)
user.id and user.name - if we know the logged in user, we can give the bot his ID or name
userData - object that can be used to pass any information that we know about the user to the bot

(e.g. email, phone, etc.)
startOverTrigger - allows you to attach an event to any element that causes the conversation to

restart - e.g. the "Start over" button (more info on GitHub and on the README NA GitHubu)

The appearance of the chat can then be freely customized using CSS styles - ideally all selector rules
should start with .wc-app . Because of the openness to such customization options, on the other hand, it
may happen that WebChat is negatively affected by web styling (e.g. generic rules on basic elements like
<button> etc.) - in this case it is necessary to resolve these problems by refining them to target only
.wc-app .

WebChat can be influenced by the following parameters in the URL suitable e.g. during testing:

#feedbot-test-mode sets testMode: true to the userData setting, which enables the test mode
for the user in the bot
#feedbot-intro-dialog overrides the default dialog that the bot starts the conversation with (can

also be set using the introDialog.id parameter in the webchat settings)
the logic for passing parameters from the # part of the URL to the bot can be customized in two
ways

e.g. if we send a link to users we know, we can set the user.id , according to it, so it will be
possible to trace which conversation was made by which user and, in addition, it will be
possible to recognize and react if they return to the link in the future
set any variable in userData according to the parameter and then use it in the bot
communication, or decide according to it (e.g. if it accesses directly, i.e. without the
parameter in the URL or from the QR code, where some parameter will be or e.g. from the
newsstand, where some parameter is also preset)

directLine: { secret: '...' },

bot: { id: '...', name: 'Chatbot' },

theme: { mainColor: '#d83838' },

locale: 'en', // Abbreviation of the language in which the webchat elements should be, e.g.

input text for text

disableInputWhenNotNeeded: true // Hide input for text until the user is prompted

Appearance modifications

URL parameters

https://github.com/wearefeedyou/feedbot-webchat

select which dialog to run instead of the default main dialog according to the parameter

Background communication

WebChat can also communicate with VA in the background using events (so-called back-channel) in
addition to the transmission of classic messages.

The following is a demonstration of how to react to any event defined anywhere in the communication
tree at the exact moment the user passes through the location:

{

 // ...

 userData: { zdroj: location.hash.substr(1) }, // everything after # in the URL is passed to

the "source" variable

 introDialog: { id: location.hash.substr(1) === 'xyz' ? 'abc' : 'main' } // if #xyz is in

the URL, run the "abc" dialog

}

Bot → WebChat

// instead of the classic setting of the secret in the directLine property, it is necessary

to create

// BotConnection object and pass it to the settings

var botConnection = new BotChat.DirectLine({

 secret: "...",

});

BotChat.App({

 botConnection: botConnection,

 bot: { id: "feedbot-..." },

});

// it is then possible to register callbacks to certain events and from activity.value

// use any value passed from the bot

botConnection.activity$.filter(function (activity) {

 return (

 activity.type === "event" && activity.name === "set-reload-timeout"

);

}).subscribe(function (activity) {

 setTimeout(function () {

Conversely, the page on which WebChat is running can trigger any of the following events in the bot by
simply using the event trigger on the window object:

feedbot:trigger-dialog starts selected dialog specified in dialog property of CustomEvent (for
example window.dispatchEvent(new CustomEvent('feedbot:trigger-dialog', { detail: 'package-
status' })))
feedbot:start-over restarts conversation, which is the same behavior as startOverTrigger

callback in config above (for example window.dispatchEvent(new CustomEvent('feedbot:start-
over')))

If support of Internet Explorer is required, please provide use fallback to support custom event creation
there.

 location.reload();

 }, parseInt(activity.value || 60000));

});

WebChat → Bot

A non-functioning webchat may be caused by a forbidden Web Socket protocol on the internal company
network based on some company policy, which will not happen when real users access it from the
Internet. The following link launches a virtual assistant using older technology that should pass through
the corporate restriction, but does not support displaying indicators that the bot is currently typing. If that
doesn't help, ask for more information about the browser and operating system being used.

https://chat.feedyou.ai/pooling/...#feedbot-test-mode - ... replace with a bot ID without feedbot- prefixu

For hosting established before 8.3.2021, all domains where WebChat will run must be enabled by
Feedyou
The test mode isn´t enabled in the bot?? For testing, you can bypass that by adding #feedbot-
test-mode flag to the end of the URL
The "Visibility" isn´t set to "never" in the WebChat settings in the "Channel settings" section in
Designer

Problems with WebChat
deployment
Chat window is empty

The chat window will not appear

https://chat.feedyou.ai/pooling/...#feedbot-test-mode

Operating a virtual assistant microsite on your own subdomain, e.g. anything.customer.com can be
achieved in two ways:

have a webmaster create a microsite containing HTML code on a given domain, the method of
obtaining it varies depending on whether there is an existing microsite and bot and whether it is
customized

if the bot has its own webchat microsite in the format
https://feedbot....blob.core.windows.net/public/webchat.html , it is possible to take the

HTML code directly from it
if the appearance of the microsite is newly managed dynamically from Designer and the
microsite is therefore running at https://chat.feedyou.ai/... , then it is advisable to take

the HTML code from here and just replace ... using the hosting ID of the bot
for a given subdomain on the web server, set a one-time proxy pass to the address
https://chat.feedyou.ai/... or https://feedbot....blob.core.windows.net/public/webchat.html

where the microsite is currently running (or just use http protocol, SSL towards the client is
handled by the webserver anyway)

Operating a microsite on your
own subdomain

https://github.com/feedyou-ai/feedbot-webchat/blob/master/samples/feedyou/no-config-full-screen.html

